2 2

Next: Model setting without an Up: Alternative formulation Previous: Alternative formulation   Contents   Index

Running snappyHexMesh - Rotor Region

Utility snappyHexMesh gradually refines background mesh in direction to the surface model, reading set-up from system/snappyHexMeshDict:

 

castellatedMesh true;
snap            true;
addLayers       true;

// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near
// - to 'snap' the mesh boundary to the surface
geometry
{
    blade-rot.stl           {  type triSurfaceMesh;  name blade_rot_wall;     }
    hub-rot-tip.stl         {  type triSurfaceMesh;  name hub_rot_tip_wall;   } 
    hub-rot-wall.stl        {  type triSurfaceMesh;  name hub_rot_wall;  }
    hub-rot-wheel.stl       {  type triSurfaceMesh;  name hub_rot_wheel_wall; }
    shroud-rot.stl          {  type triSurfaceMesh;  name shroud_rot_wall;    }
    interface-rot-guide.stl {  type triSurfaceMesh;  name rotor_spiral_interface;        }
    interface-rot-draft.stl {  type triSurfaceMesh;  name rotor_drafttube_interface;        }
};

// Settings for the castellatedMesh generation.
castellatedMeshControls
{

    // Refinement parameters
    // ~~~~~~~~~~~~~~~~~~~~~

    // If local number of cells is >= maxLocalCells on any processor
    // switches from from refinement followed by balancing
    // (current method) to (weighted) balancing before refinement.
    maxLocalCells 100000;

    // Overall cell limit (approximately). Refinement will stop immediately
    // upon reaching this number so a refinement level might not complete.
    // Note that this is the number of cells before removing the part which
    // is not 'visible' from the keepPoint. The final number of cells might
    // actually be a lot less.
    maxGlobalCells 2000000;

    // The surface refinement loop might spend lots of iterations refining just a
    // few cells. This setting will cause refinement to stop if <= minimumRefine
    // are selected for refinement. Note: it will at least do one iteration
    // (unless the number of cells to refine is 0)
    minRefinementCells 0;

    // Allow a certain level of imbalance during refining
    // (since balancing is quite expensive)
    // Expressed as fraction of perfect balance (= overall number of cells /
    // nProcs). 0=balance always.
    maxLoadUnbalance 0.10;

    // Number of buffer layers between different levels.
    // 1 means normal 2:1 refinement restriction, larger means slower
    // refinement.
    nCellsBetweenLevels 2;


    // Explicit feature edge refinement
    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    // Specifies a level for any cell intersected by explicitly provided
    // edges.
    // This is a featureEdgeMesh, read from constant/triSurface for now.
    // Specify 'levels' in the same way as the 'distance' mode in the
    // refinementRegions (see below). The old specification
    //      level   2;
    // is equivalent to
    //      levels  ((0 2));

    features
    (
	{
	    file "blade-rot.eMesh";
	    level 5;
	}
	{
	    file "hub-rot-tip.eMesh";
	    level 5;
	}
	{
	    file "hub-rot-wall.eMesh";
	    level 5;
	}
	{
	    file "hub-rot-wheel.eMesh";
	    level 5;
	}
	{
	    file "interface-rot-draft.eMesh";
	    level 5;
	}
	{
	    file "interface-rot-guide.eMesh";
	    level 5;
	}
	{
	    file "shroud-rot.eMesh";
	    level 5;
	}

    );


    // Surface based refinement
    // ~~~~~~~~~~~~~~~~~~~~~~~~

    // Specifies two levels for every surface. The first is the minimum level,
    // every cell intersecting a surface gets refined up to the minimum level.
    // The second level is the maximum level. Cells that 'see' multiple
    // intersections where the intersections make an
    // angle > resolveFeatureAngle get refined up to the maximum level.

    refinementSurfaces
    {
        // patches
        shroud_rot_wall      {  level (4 5);  patchInfo { type wall; }  }
        hub_rot_wheel_wall   {  level (4 5);  patchInfo { type wall; }  }
        hub_rot_wall    {  level (4 5);  patchInfo { type wall; }  }
        hub_rot_tip_wall     {  level (4 5);  patchInfo { type wall; }  }
        blade_rot_wall       {  level (5 5);  patchInfo { type wall; }  }
        
        // rotor boundaries
        rotor_spiral_interface        {  level (4 4);  patchInfo { type patch; }  }
        rotor_drafttube_interface      {  level (4 4);  patchInfo { type patch; }  }
    }

Create the mesh running snappyHexMesh utility:
# snappyHexMesh

When finished, check the mesh running checkMesh and view the mesh in paraview:
# checkMesh -latestTime
# paraFoam

francis turbine cfd openfoam rotor mesh

Figure: Francis turbine rotor region mesh view.
Image francis-turbine-cfd-openfoam-rotor-mesh

The final mesh is located in directory with the highest number.