Next: Model setting without an Up: Alternative formulation Previous: Alternative formulation Contents Index
Running SnappyHexMesh - Rotor Region
Utility snappyHexMesh refines background mesh in direction to the surface model. The set-up is read from system/snappyHexMeshDict:
castellatedMesh true; snap true; addLayers false; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { RotorAMI1.stl { type triSurfaceMesh; name RotorAMI1; } RotorAMI2.stl { type triSurfaceMesh; name RotorAMI2; } RotorBlade.stl { type triSurfaceMesh; name RotorBlade; } RotorShroud.stl { type triSurfaceMesh; name RotorShroud; } RotorHub.stl { type triSurfaceMesh; name RotorHub; } RotorOut.stl { type triSurfaceMesh; name RotorOut; } RotorMXP_00.stl { type triSurfaceMesh; name RotorMXP00; } RotorMXP_01.stl { type triSurfaceMesh; name RotorMXP01; } RotorMXP_02.stl { type triSurfaceMesh; name RotorMXP02; } RotorMXP_03.stl { type triSurfaceMesh; name RotorMXP03; } RotorMXP_04.stl { type triSurfaceMesh; name RotorMXP04; } RotorMXP_05.stl { type triSurfaceMesh; name RotorMXP05; } RotorMXP_06.stl { type triSurfaceMesh; name RotorMXP06; } RotorMXP_07.stl { type triSurfaceMesh; name RotorMXP07; } RotorMXP_08.stl { type triSurfaceMesh; name RotorMXP08; } RotorMXP_09.stl { type triSurfaceMesh; name RotorMXP09; } RotorMXP_10.stl { type triSurfaceMesh; name RotorMXP10; } RotorMXP_11.stl { type triSurfaceMesh; name RotorMXP11; } RotorMXP_12.stl { type triSurfaceMesh; name RotorMXP12; } RotorMXP_13.stl { type triSurfaceMesh; name RotorMXP13; } RotorMXP_14.stl { type triSurfaceMesh; name RotorMXP14; } RotorMXP_15.stl { type triSurfaceMesh; name RotorMXP15; } RotorMXP_16.stl { type triSurfaceMesh; name RotorMXP16; } RotorMXP_17.stl { type triSurfaceMesh; name RotorMXP17; } RotorMXP_18.stl { type triSurfaceMesh; name RotorMXP18; } RotorMXP_19.stl { type triSurfaceMesh; name RotorMXP19; } RotorMXP_20.stl { type triSurfaceMesh; name RotorMXP20; } RotorMXP_21.stl { type triSurfaceMesh; name RotorMXP21; } RotorMXP_22.stl { type triSurfaceMesh; name RotorMXP22; } RotorMXP_23.stl { type triSurfaceMesh; name RotorMXP23; } RotorMXP_24.stl { type triSurfaceMesh; name RotorMXP24; } RotorMXP_25.stl { type triSurfaceMesh; name RotorMXP25; } RotorMXP_26.stl { type triSurfaceMesh; name RotorMXP26; } RotorMXP_27.stl { type triSurfaceMesh; name RotorMXP27; } RotorMXP_28.stl { type triSurfaceMesh; name RotorMXP28; } RotorMXP_29.stl { type triSurfaceMesh; name RotorMXP29; } RotorMXP_30.stl { type triSurfaceMesh; name RotorMXP30; } RotorMXP_31.stl { type triSurfaceMesh; name RotorMXP31; } RotorMXP_32.stl { type triSurfaceMesh; name RotorMXP32; } RotorMXP_33.stl { type triSurfaceMesh; name RotorMXP33; } RotorMXP_34.stl { type triSurfaceMesh; name RotorMXP34; } RotorMXP_35.stl { type triSurfaceMesh; name RotorMXP35; } }; // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 1000000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 10000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 0; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 2; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by its edges. // This is a featureEdgeMesh, read from constant/triSurface for now. features ( { file "RotorBlade.eMesh"; level 0; } { file "RotorAMI1.eMesh"; level 0; } { file "RotorAMI2.eMesh"; level 0; } ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { "(RotorShroud|RotorHub)" { level (3 3); } "RotorOut" { level (1 3); } "RotorBlade" { level (3 4); } "RotorAMI.*" { level (3 3); } "RotorMXP.*" { level (4 4); } } // Resolve sharp angles resolveFeatureAngle 30;
Create the mesh running snappyHexMesh utility:
snappyHexMesh
In order to reduce bandwidth and to speed up computation on the generated rotor mesh, it is convenient to use renumberMesh utility using following command:
renumberMesh -latestTime
When finished, check the mesh running checkMesh and view the mesh in paraview:
checkMesh
paraFoam
Figure: Rotor of axial turbine – final mesh view.