1

Previous: Computation set up Up: Computation set-up Next: Running test case

This is an automatically generated documentation by LaTeX2HTML utility. In case of any issue, please, contact us at info@cfdsupport.com.

Numerical solution parameters

  • Numerical solution parameters are stored in directory system
  • In file fvSolution there are stored parameters for solving system of linear equations and parameters for numerical method
  • Print file fvSolution on the screen:
    # cat $FOAM_RUN /pitzDaily/system/fvSolution

     

    solvers
    {
        p
        {
            solver          GAMG;
            tolerance       1e-06;
            relTol          0.1;
            smoother        GaussSeidel;
        }
    
        "(U|k|epsilon|omega|f|v2)"
        {
            solver          smoothSolver;
            smoother        symGaussSeidel;
            tolerance       1e-05;
            relTol          0.1;
        }
    }
    
  • Section solvers defines which linear system solvers are used to compute quantities (partial differential equations are transformed to system of linear equations)
  • Each quantity has its options
  • Parameter solver defines which solver is used
  • Parameter preconditioner (not used in this case) defines preconditioner of linear system solver
  • Parameter relTol defines relative tolerance of linear system solver (order of residual decrease for each iteration)
  • Parameter tolerance defines absolute tolerance of linear system solver (initial residual is checked)

  • Overview of linear solvers
    DefinitionMethod nameDescription
    PCGPreconditioned Conjugate Gradientprojection method for symmetric
      and positive-definite matrix
    PBiCGPreconditioned Bi-Conjugate Gradientprojection method for
      general matrix
    GAMGGeneralized Geometric-Algebraicmulti-grid solver
     Multi-Grid 
    smoothSolver iteration solver
       

     

  • Overview of preconditioners
    DefinitionPreconditioner
    DICDiagonal Incomplete Cholesky (symmetric)
    FDICFaster Diagonal Incomplete Cholesky
    DILUDiagonal Incomplete LU Factorization
    diagonalJacobi preconditioner
    GAMGGeneralized Geometric Algebraic Multi Grid
    noneno preconditioner
      

     

  • “Smoother“ overview
    Definition“Smoother“
    DICDiagonal Incomplete Cholesky (symmetric)
    GaussSeidelGauss-Seidel iteration method
    DICGaussSeidelcombination of DIC and GaussSeidel
      

     

    SIMPLE
    {
        nNonOrthogonalCorrectors 0;
        consistent      yes;
    
        residualControl
        {
            p               1e-2;
            U               1e-3;
            "(k|epsilon|omega|f|v2)" 1e-3;
        }
    }
    
  • In section SIMPLE there are defined parameters of SIMPLE algorithm and convergence criteria residualControl
  • Parameter nNonOrthogonalCorrectors defines number of non-orthogonal correctors (may improve convergence on non-orthogonal meshes) (0 orthogonal mesh – 20 strongly non-orthogonal mesh)
  • If all quantities reach residuals in section residuaControl, computation is stopped

     

    relaxationFactors
    {
        equations
        {
            U               0.9; // 0.9 is more stable but 0.95 more convergent
            ".*"            0.9; // 0.9 is more stable but 0.95 more convergent
        }
    }
    
  • In section relaxationFactors there are defined relaxation factors for individual quantities

  • In file fvSchemes there are stored numerical schemes properties for individual quantities
  • Print file on the screen:
    # cat $FOAM_RUN /pitzDaily/system/fvSchemes
    ddtSchemes
    {
        default         steadyState;
    }
    
  • In section ddtSchemes there are defined schemes for time derivatives

     

    gradSchemes
    {
        default         Gauss linear;
    }
    
  • In section gradSchemes are defined schemes for gradient discretization
  • There may be defined different schemes for each quantity

     

    divSchemes
    {
        default         none;
        div(phi,U)      bounded Gauss linearUpwind grad(U);
        div(phi,k)      bounded Gauss limitedLinear 1;
        div(phi,epsilon) bounded Gauss limitedLinear 1;
        div(phi,omega)  bounded Gauss limitedLinear 1;
        div(phi,v2)     bounded Gauss limitedLinear 1;
        div((nuEff*dev2(T(grad(U))))) Gauss linear;
        div(nonlinearStress) Gauss linear;
    }
    
  • In section divSchemes there are defined schemes for divergence discretization
  • There may be defined different schemes for each quantity

     

    laplacianSchemes
    {
        default         Gauss linear corrected;
    }
    
  • In section laplacianSchemes there are defined schemes for Laplace operator discretization
  • There may be defined different schemes for each quantity

     

    interpolationSchemes
    {
        default         linear;
    }
    
  • In section interpolationSchemes there are defined schemes for interpolating from cell centers to cell faces
  • There may be defined different schemes for each quantity

     

    snGradSchemes
    {
        default         corrected;
    }
    
  • In section snGradSchemes there are defined schemes for gradient discretization in direction perpendicular to the boundary
  • There may be defined different schemes for each quantity

     

    wallDist
    {
        method meshWave;
    }
    
    // ************************************************************************* //
    
  • In section wallDist there is method for calculation of distance of cell centers and boundary (which is needed in turbulent models).

  • More information is in the web documentation:
    http://www.openfoam.com/docs/user/fvSchemes.php

Previous: redSolver – steady state, Up: TCFD Solvers Next: greenSolver – steady state,
This is an automatically generated documentation by LaTeX2HTML utility. In case of any issue, please, contact us at info@cfdsupport.com.

redDyMSolver - transient, compressible

TCFD solver for transient, compressible fluid flow is called redDyMSolver. It was gradually developed during the time from the sonicFoam solver. In any matters the redDyMSolver behaves the same way as any standard OpenFOAM solver. It is compatible with all OpenFOAM applications and libraries. Solver is modified to be more robust, limits for variables can be specified and many other changes have been done.