1

Previous: Parallel run Up: Running in parallel Next: Boundary conditions in OpenFOAM

This is an automatically generated documentation by LaTeX2HTML utility. In case of any issue, please, contact us at info@cfdsupport.com.

Parallel reconstruction of solution

  • To reconstruct solution use application reconstructPar:

    # reconstructPar -latestTime

    /*---------------------------------------------------------------------------*\
    | =========                 |                                                 |
    | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
    |  \\    /   O peration     | Version:  dev                                   |
    |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
    |    \\/     M anipulation  |                                                 |
    \*---------------------------------------------------------------------------*/
    Build  : dev-e2ccbbbb
    Exec   : reconstructPar -latestTime
    Date   : Jun 16 2017
    Time   : 12:03:00
    Host   : $HOSTNAME
    PID    : $$
    Case   : $FOAM_RUN/pitzDaily
    nProcs : 1
    sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).
    fileModificationChecking : Monitoring run-time modified files using timeStampMaster (fileModificationSkew 10)
    allowSystemOperations : Allowing user-supplied system call operations
    
    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
    Create time
    
    
    
    Reconstructing fields for mesh region0
    
    Time = 295
    
    Reconstructing FV fields
    
        Reconstructing volScalarFields
    
            p
            nut
            k
            epsilon
    
        Reconstructing volVectorFields
    
            U
    
        Reconstructing surfaceScalarFields
    
            phi
    
    Reconstructing point fields
    
    No point fields
    
    No lagrangian fields
    
    
    End
    
  • In case directory appears a new directory with last time layer of the solution
  • Local data from processors are not deleted after reconstruction

Temporal and Spatial Discretization Settings - fvSchemes File

The sub-dictionary ddtSchemes defines a temporal discretization. The cases are solved as steady state problems:

 

ddtSchemes
{
    default         steadyState;
}

In file fvSchemes the important sub-dictionary is divSchemes. The following second order setup of divergence schemes is recommended:

 

divSchemes
{
    default          none;
    
    div(phi,U)       bounded Gauss limitedLinear 1.0;
    div(phi,k)       bounded Gauss upwind;
    div(phi,omega)   bounded Gauss upwind;
    div(phi,epsilon) bounded Gauss upwind;
    
    div((nuEff*dev(T(grad(U))))) Gauss linear;
}

For complicated unstable case, an alternative may be first order setup of divergence schemes:

 

divSchemes
{
    default          none;
    
    div(phi,U)       bounded Gauss upwind;
    div(phi,k)       bounded Gauss upwind;
    div(phi,omega)   bounded Gauss upwind;
    div(phi,epsilon) bounded Gauss upwind;
    
    div((nuEff*dev(T(grad(U))))) Gauss linear;
}

Previous: Cell Centered Approach Up: TCFD Solvers Next: System of Linear Equations
This is an automatically generated documentation by LaTeX2HTML utility. In case of any issue, please, contact us at info@cfdsupport.com.

Under-Relaxation

Under-Relaxation reduces solution oscillations and helps to keep the computation stable. After each iteration, at each cell, a new value for variable img188 in cell $ i$ is then updated using following equation: img189 where $ \alpha$ is under-relaxation factor. The choice $ \alpha$ $ =$ $ 1$ corresponds to no under-relaxation. The choice $ \alpha$ $ <$ $ 1$ is under-relaxation. This may slow down speed of convergence but increases the stability of the computation, i.e. it decreases the possibility of divergence or oscillations in the solution. For more details see e.g. [1].