Previous: Implementation Up: Creating new OpenFOAM solver Next: Running test case using
This is an automatically generated documentation by LaTeX2HTML utility. In case of any issue, please, contact us at info@cfdsupport.com.
Test case set up
- Copy cavity test case:
# cd $FOAM_RUN
# cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity ./cavityTemp
# cd $FOAM_RUN /cavityTemp - In file constant/transportProperties add constant for heat conductivity kappa:
nu [ 0 2 -1 0 0 0 0 ] 0.01; kappa [ 0 2 -1 0 0 0 0 ] 0.001;
- Initial and boundary conditions for temperature create e.g. from pressure:
# cp 0/p 0/T - In file 0/T replace letter p with T
- Change dimensions to Kelvin: dimensions [0 0 0 1 0 0 0];
- Set initial and boundary conditions according to temperature
- Initial temperature of the fluid is e.g. 300 K
- At the moving wall temperature is e.g. 350 K
- At the three rigid wall temperature is e.g. 300 K
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.2.1 | | \\ / A nd | Web: www.OpenFOAM.com | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class volScalarField; object T; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // dimensions [0 0 0 1 0 0 0]; internalField uniform 300; boundaryField { movingWall { type fixedValue; value uniform 350; } fixedWalls { type fixedValue; value uniform 300; } frontAndBack { type empty; } } // ************************************************************************* //
- In file system/fvSchemes set divergence scheme and laplacian scheme for temperature:
divSchemes { default none; div(phi,U) Gauss linear; div(phi,T) Gauss upwind; } laplacianSchemes { default Gauss linear orthogonal; laplacian(kappa,T) Gauss linear corrected; }
- In file system/fvSolution set linear system solver for temperature:
U { solver smoothSolver; smoother symGaussSeidel; tolerance 1e-05; relTol 0; } T { solver smoothSolver; smoother symGaussSeidel; tolerance 1e-07; relTol 0; }