1

Previous: cyclone-Euler case Up: Case structure Next: Initial and boundary condition
This is an automatically generated documentation by LaTeX2HTML utility. In case of any issue, please, contact us at info@cfdsupport.com.

Initial and boundary condition for twoPhaseEulerFoam

  • The directory 0.euler contains the definition of initial and boundary condition for each variable.
  • The list of all variables contains Table crossref.
  • Basic setup of initial and boundary condition:
    • alphat.* – Set as calculated; At walls for continuous phase a standard wall function is applied.
    • alpha.particles – Initial value: uniform 0; Inlet value: uniform 0.05.
    • alpha.water – Initial value: uniform 1; Inlet value: uniform 0.95.
    • epsilon.water – Initial and inlet value: uniform 3.144.
31 1
  • k.water – Initial and inlet value: uniform 0.375.
55
  • nut.* – Set as calculated; At walls for continuous phase a standard wall function is applied.
  • p – Set as calculated; Computed from p_rgh.
  • p_rgh – Pressure value 75 2 is set at the outlet.
  • Theta.particles – Small value 76 2 is set at the inlet.
  • T.* – Initial and inlet temperature is set to 77 2K.
  • U.*78 2m/s is set at the inlet (direction perpendicular to the inlet face).

Table: Initial and boundary conditions for twoPhaseEulerFoam.

$ \displaystyle{^\llcorner}$ 0.euler  
     $ \displaystyle{^\llcorner}$ alphat.particles <#37075#>
     $ \displaystyle{^\llcorner}$ alphat.water
     $ \displaystyle{^\llcorner}$ alpha.particles <#37078#>
     $ \displaystyle{^\llcorner}$ alpha.water
     $ \displaystyle{^\llcorner}$ epsilon.water <#37081#>
     $ \displaystyle{^\llcorner}$ k.water
     $ \displaystyle{^\llcorner}$ nut.particles
     $ \displaystyle{^\llcorner}$ nut.water
     $ \displaystyle{^\llcorner}$ p - static pressure
     $ \displaystyle{^\llcorner}$ p_rgh - $ p\_rgh = p - \rho g h$
     $ \displaystyle{^\llcorner}$ Theta.particles - granular temperature
     $ \displaystyle{^\llcorner}$ T.particles <#37092#>
     $ \displaystyle{^\llcorner}$ T.water
     $ \displaystyle{^\llcorner}$ U.particles <#37095#>
     $ \displaystyle{^\llcorner}$ U.water