2 2

Next: Model setting without an Up: Alternative formulation Previous: Alternative formulation   Contents   Index

Fan Efficiency

49
  • Pt    aerodynamic power, $ \color{white} P_\mathrm{t} = Y_\mathrm{t} \cdot \dot{m}_2 $ [W]
  • Pw    torque power, $ \color{white} P_\mathrm{w} = M_\mathrm{d} \cdot \omega $ [W]
  • f     compress factor, $ \color{white} f = 1- 0.36 \cdot \frac{\Delta p_\mathrm{s}}{p_\mathrm{s1}}$ [-]
  • Yst     static work, $ \color{white} Y_\mathrm{st} = f \cdot \frac{\Delta p_\mathrm{s}}{\rho^1}$ [m $ \color{white} ^2$/s $ \color{white} ^2$]
  • Yd    dynamic work, $ \color{white} Y_\mathrm{d} = \frac{c_2^2-c_1^2}{2}$ [m $ \color{white} ^2$/s $ \color{white} ^2$]
  • Yt    total work, $ \color{white} Y_\mathrm{t} = Y_\mathrm{st} + Y_\mathrm{d}$ [m $ \color{white} ^2$/s $ \color{white} ^2$]
  • psi    pressure number, $ \color{white} \psi = \frac{2 \cdot D \cdot \Delta p_\mathrm{t}}{\rho_1 \cdot c_c^2} = \frac{729.5 \cdot \Delta p_\mathrm{t}}{n^2 \cdot D^2 \cdot \rho_1}$ [-]
  • phi    flow number, $ \color{white} \phi = \frac{Q_w}{A \cdot c_c} = \frac{24.3 \cdot Q_w}{n \cdot D^3}$ [-]
  • axialForce    axial force on rotor, $ \color{white} F_\mathrm{a}$ [N]
  • pTotInlet     total pressure at the inlet, $ \color{white} p_\mathrm{t1}$ [Pa]
  • pTotVolute     total pressure at the outlet, $ \color{white} p_\mathrm{t2}'$ [Pa]
  • pTotOutlet     total pressure at the wheel outlet, $ \color{white} p_\mathrm{t2}$ [Pa]
  • pInlet     static pressure at the inlet, $ \color{white} p_\mathrm{s1}$ [Pa]
  • pVolute     static pressure at the outlet, $ \color{white} p_\mathrm{s2}'$ [Pa]
  • pOutlet     static pressure at the wheel outlet, $ \color{white} p_\mathrm{s2}$ [Pa]
  • magUInlet     velocity at the inlet, $ \color{white} c_1$ [m/s]
  • magUVolute     velocity at the outlet, $ \color{white} c_2'$ [m/s]
  • magUOutlet     velocity at the wheel outlet, $ \color{white} c_2$ [m/s]
  • massFlowInlet     mass flow at the inlet, $ \color{white} \dot{m}_1$ [kg/s]
  • massFlowVolute     mass flow at the outlet, $ \color{white} \dot{m}_2'$ [kg/s]
  • massFlowOutlet     mass flow at the wheel outlet, $ \color{white} \dot{m}_2$ [kg/s]
  • rhoInlet     density at the inlet, $ \color{white} \rho_1$ [kg/m $ \color{white} ^3$]
  • rhoVolute         density at the outlet, $ \color{white} \rho_2'$ [kg/m $ \color{white} ^3$]
  • rhoOutlet     density at the wheel outlet, $ \color{white} \rho_2$ [kg/m $ \color{white} ^3$]
  • volumeFlowRateInlet     volumetric flow rate at the inlet, $ \color{white} Q_\mathrm{w1}$ [m $ \color{white} ^3$/s]
  • volumeFlowRateVolute     volumetric flow rate at the outlet, $ \color{white} Q_\mathrm{w2}'$ [m $ \color{white} ^3$/s]
  • volumeFlowRateOutlet     volumetric flow rate at the wheel outlet, $ \color{white} Q_\mathrm{w2}$ [m $ \color{white} ^3$/s]
  • moment     torque at wheel, $ \color{white} M_\mathrm{d}$ [N $ \color{white} \cdot$m]
  • totalPressureDifference     difference in total pressure inlet-outlet, $ \color{white} \Delta p_\mathrm{t}$ [Pa]
  • staticPressureDifference     difference in static pressure inlet-outlet, $ \color{white} \Delta p_\mathrm{s}$ [Pa]